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A two-state system �TSS� under time-periodic perturbations �to be regarded as input signals� is studied in
connection with self-tuning �ST� of threshold and stochastic resonance �SR�. By ST, we observe an improve-
ment of the signal-to-noise ratio �SNR� in a weak-noise region. An analytic approach to a tuning equation
reveals that SNR improvement is possible also for the large-noise region and this is demonstrated by Monte
Carlo simulations of hopping processes in a TSS. ST and SR are discussed from a little more physical point of
view of the energy transfer �dissipation� rate, which behaves in a similar way as the SNR. Finally ST is
considered briefly for a double-well potential system, which is closely related to the TSS.
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I. INTRODUCTION

Recently the constructive or beneficial roles of noise have
gathered considerable interest in many fields, such as physi-
cal �1� and biological �2� sciences as well as engineering �3�.
One of the conspicuous effects of noise or random distur-
bance is that it can drive a dynamical system out of an equi-
librium state, thus giving a lifetime or Kramers time �4� to
�metastable� equilibrium states.

The simulated annealing method �3�, which is used to
search for solutions to minimization �or more generally op-
timization� problems in a complex system, employs noise to
prevent a search process from being trapped in local mini-
mum �metastable� states. Sophisticated algorithms are devel-
oped to efficiently escape from local metastable states, which
are useful for both simulated annealing and efficient Monte
Carlo simulations �5�.

Stochastic resonance �SR� �1� is a phenomenon in which
information transfer from input to output signals can be sig-
nificantly increased by noise with appropriate �nonzero� in-
tensity. One can comprehend SR by considering a simple
threshold system �6�, which gives 1 �0� as an output signal x
if input signal s plus noise � is larger �smaller� than a certain
threshold value a. If an input signal s is always smaller than
a and there is no noise, x is always equal to 0 and informa-
tion transfer through the threshold system is impossible. By
adding noise � to s, there is some possibility of s+��a,
producing x=1 and information about s is conveyed through
the threshold system. However, large noise deforms the
original input signals too much, leading to no correlation
between s and x, resulting in no information transfer from
input to output signals.

As a system similar to the threshold system mentioned
above, let us consider an overdamped Brownian particle in a
double-well potential driven by a sinusoidal time-periodic
force, which was proposed and studied as a model for Earth’s
ice ages �7�. This model has an activation energy and Gauss-
ian Brownian noise �G, which may be regarded as the thresh-
old value a and the noise �, respectively, in the threshold

system. In this case information on input signal, such as the
frequency 2��0 of the sinusoidal force, is transferred as the
peak position in the power spectrum of the output signal.
When the variance �or temperature from the fluctuation-
dissipation theorem� of �G is tuned to an appropriate value,
which turns out to be nonzero, the signal-to-noise ratio
�SNR� attains its maximum value.

From this we may consider that SR has a close relation
with synchronization, especially when the external distur-
bance is characterized by a frequency f0=2��0. In this re-
gard we mention stochastic synchronization, in which an ex-
citable system, like neurons, responds in synchrony with a
external disturbance �signal�, which has also gathered lots of
interest in connection with electroreceptors in the paddlefish
�8�.

When input signals are subthreshold, the ability of a
threshold system to transfer information is considerably lim-
ited for weak noise, as mentioned above. To improve infor-
mation transfer in this region, we proposed recently a simple
adaptation process �9� for a threshold value a hinted at by a
self-tuning mechanism proposed to explain auditory sensitiv-
ity �10� when the input signal becomes very weak.

In this paper we consider effects of self-tuning �ST� of the
threshold value for a two-state system �TSS� driven by a
sinusoidal signal. One merit of the TSS is that one can cal-
culate the SNR accurately �11� by solving a differential equa-
tion, without doing numerical experiments to obtain the
power spectrum, based on which the SNR is usually calcu-
lated. In Sec. II we introduce our system, the TSS, and a
closely related double-well potential system �DWPS� and
propose a mechanism to control a threshold value—i.e., the
activation energy. In Sec. III numerical results for the SNR,
the probability density for residence time �12�, stochastic dy-
namics of threshold values, and the firing rate for the TSS are
presented. We show that a large SNR is achieved in the
small-noise region as expected. In Sec. IV the adaptation
process, which is governed by a threshold equation with two
parameters � and �, is studied both analytically and numeri-
cally. We discuss how these parameters affect the quality of
information transfer, with the main emphasis put on the
large-noise region. The final section contains some com-
ments on the energy transfer rate from input signals to a
reservoir and on the DWPS.*Electronic address: munakata@amp.i.kyoto-u.ac.jp
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II. MODEL

In this section we first introduce the TSS �11� and relate it
to the DWPS for convenience for later discussions on the
physical aspects of the model such as energy transfer to a
reservoir. The system variable x�t� at time t is assumed to
take only two values x+=1 and x−=−1, and the transition
between the two states is described by the master equation

dp+�t�/dt = − w−�t�p+�t� + w+�t��1 − p+�t�� , �1�

where p+�t� denotes the probability that x�t�=x+ with p+�t�
+ p−�t�=1. w−�t� is the transition probability at time t for the
particle to jump to the left�x−� site and w+�t� is similarly
defined.

The rates w+�t� and w−�t� are expressed in an Arrhenius
form as

w+�t� = exp��− a + A0 cos��0t��/T� ,

w−�t� = exp��− a − A0 cos��0t��/T� , �2�

where T measures strength of noise and a±A0 cos��0t� de-
notes �time-dependent� activation energy for jumping.

A physical system which is closely related to the TSS is
the DWPS described by the Langevin equation

dx/dt = − dV�x�/dx + A0 cos��0t� + f�t� , �3�

where the random force f�t� satisfies the fluctuation-
dissipation relation

�f�t�f�t��� = 2T��t − t�� �4�

and V�x� represents the double-well potential:

V�x� = a�x − 1�2�x + 1�2. �5�

When both A0 and T are smaller than a in Eq. �5�, the
Brownian particle described by Eq. �3� may be considered to
stay either at x+=1 or x−=−1 for time of the order of Kram-
ers time 	Kr	exp�a /T� �4� and occasionally jumps between
x+ and x−.

When the relaxation time 	r	�8a�−1 of intrawell motion
is short in the sense 	r�0
1 one can introduce the adiabatic
assumption to reduce the DWPS approximately to the TSS
described by Eq. �1�.

Both the TSS and DWPS are extensively studied in con-
nection with SR and are known to show SR �1�; that is, SNR
shows a maximum at nonzero T when other parameters char-
acterizing the system, such as activation energy a and �0, A0,
are kept fixed. It may be noted that for the TSS �11,12�
analytic �or integral form� results for the SNR and the distri-
bution function pfp�	� of the first passage time for jumping to
another state are available. One merit of the TSS is that even
if we take effects of ST into account, we can calculate the
SNR by solving a coupled set of differential equations �1�
and �6�, to be given below, without recourse to Monte Carlo
simulations, which inevitably introduce fluctuations to power
spectra and consequently to the SNR.

Here we introduce a mechanism for ST of the activation
energy a in Eqs. �2�, following the prescription presented in
Ref. �9�. If there occurs no jumping or activation events, a�t�

simply decreases, while if a jumping event occurs, a�t� in-
creases, thus controlling the jumping or firing rate by avoid-
ing too large or too small firing rates. To express this adap-
tation process mathematically, we employ the following
dynamics for a�t�:

da�t�/dt = − �a�t� + ��w+�t�p−�t� + w−�t�p+�t�� . �6�

Indeed, if we tentatively put �=0, a�t� goes to zero since �
is chosen to be positive. If we put � positive, we notice that
a�t� increases in proportion to the barrier crossing rate. By
this mechanism we expect that the TSS adjusts a�t�, reflect-
ing the circumstances it is put in.

For the DWPS we propose a similar adaptation dynamics
for a�t� of the form

da�t� 
 a�t + dt� − a�t� = − �a�t�dt + ��
t

t+dt

dt�i��t − ti� ,

�7�

where ti �i=1,2 , . . . � denotes the time when x�t�=1.

III. NUMERICAL RESULTS FOR THE TSS

We first explain how one can calculate the SNR for the
TSS with ST, by slightly modifying the approach in Ref.
�11�.

A. SNR with self-tuning: Methodology

Let us denote the solution to Eqs. �1� and �6� as

p+�t� = p+�t�x0,a0,t0�, a�t� = a�t�x0,a0,t0� , �8�

which satisfy the initial conditions p+�t= t0 �x0 ,a0 , t0�
=��1,x0� and a�t= t0 �x0 ,a0 , t0�=a0 with ��1,x� denoting the
Kronecker �—i.e., ��1,x�=1 if x=1 and ��1,x�=0 if x�1.
The transition probability p�x ,a , t �x0 ,a0 , t0� for (x�t� ,a�t�) to
be at �x ,a� starting from �x0 ,a0� is expressed as

p�x,a,t�x0,a0,t0� = �„a − a�t�x0,a0,t0�…�p+�t�x0,a0,t0���x − 1�

+ �1 − p+�t�x0,a0,t0����x + 1�� . �9�

Following MacNamara and Wiesenfeld �11� let us first
introduce the time correlation function ��t ,	 �x0 ,a0 , t0� by

��t,	�x0,a0,t0� = �x�t�x�t + 	���x0,a0,t0��


 � da�� da� dx� dyxyp�x,a�,t

+ 	�y,a,t�p�y,a,t�x0,a0,t0� . �10�

After performing integration of Eq. �10� over y and a we
have

��t,	�x0,a0,t0� =� da�� dxx�p+�t�x0,a0,t0�

p„x,a�,t + 	�1,a�t�x0,a0,t0�,t…

− p−�t�x0,a0,t0�

p„x,a�,t + 	�− 1,a�t�x0,a0,t0�,t…� . �11�
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Now we take the limit t0→−� to remove the x0, a0 depen-
dence of p+, p− and of a on the right-hand side of Eq. �11�,
leading to

��t,	� =� da�� dxx�p+�t�p„x,a�,t + 	�1,a�t�,t…

− p−�t�p„x,a�,t + 	�− 1,a�t�,t…� , �12�

where we replace limt0→−�p+�t �x0 ,a0 , t0� by p+�t� and
limt0→−�a�t �x0 ,a0 , t0� by a�t�. da� can be performed trivi-
ally to have

��t,	� = p+�t��2p+„t + 	�1,a�t�,t… − 1�

− p−�t��2p+„t + 	�− 1,a�t�,t… − 1� . �13�

Finally to make the function ��t ,	� independent of the time
variable t and also to conform to experimental situations, we
take time average �1/	p�0

	pdt with 	p=2� /�0 to obtain

��	� = �1/	p��
0

	p

dt�p+�t��2p+„t + 	�1,a�t�,t… − 1�

− p−�t��2p+„t + 	�− 1,a�t�,t… − 1�� . �14�

Numerical implementation of Eq. �14� is not difficult, and
the result is conveniently expressed as

��	� � �relax�	� + B cos��0	� , �15�

where �relax�	� is the relaxation part, which goes to zero
asymptotically as 	→�, and B cos��0	� represents the peri-
odic part of the external field. Fourier transformation of Eq.
�15� has the form

�̃��� = �̃relax��� + B���� − �0� + ���0 + �0�� , �16�

and the SNR is defined here as

RSN = B/�̃relax��0� . �17�

B. Numerical results for the SNR and other quantities

It is noted that we take �0=0.5 and A0=0.3 in the follow-
ing. In Fig. 1 is plotted the SNR for systems with self-tuning

��=0.03 and �=0.1, C
� /�=0.3� and without self-tuning
�a=0.5�. We observe that the SNR is improved by self-
tuning in the low-temperature region. This is confirmed from
the first-passage time distribution function pfp�	� shown in
Fig. 2 for the two systems marked by a black circle with ST
and by a white circle �without ST� in Fig. 1 �T=0.15�. These
pfp�	� are obtained by Monte Carlo simulations, in which we
actually followed particle motion with the hopping rate given
by Eq. �2� and obtained a histogram of the first-passage time
	. For a system with ST �Fig. 2�a�� we notice that most of the
particles hop, taking the first chance of low activation en-
ergy. This is in contrast with the system without ST �Fig.
2�b��, for which we observe many bumps of probability with
the spacing 	p=2� /�0 �12–14�.

We discuss now the overall T dependence of the SNR
shown in Fig. 1 based on the time-averaged activation energy
�Fig. 3�a��, ā=	p

−10
	pa�t� with 	p
2� /�0, and on a time-

averaged firing rate fr similarly defined as ā �Fig. 3�b��. In
the low-temperature region �T�0.25�, the firing rate fr is
increased since ST lowers the activation barrier ā ��a
=0.5�. However, in the high-temperature region �T�0.25�
where the noise intensity is high, the SNR is deteriorated by
ST due to a considerable increase of ā, which results in a
rapid decrease of fr compared with the fixed-threshold case
�Fig. 3�. Firing events are in general useful for information
transfer, and our results suggests that rapid growth of ā as T
increases is not welcome from the point of information pro-
cessing by a threshold device. The behavior of ā and fr de-
pends on the parameters � and � in Eq. �6�, and this will be
considered in the next section.

Before proceeding to this problem, we show a typical
example of Monte Carlo trajectories (x�t� ,a�t�) together with
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FIG. 1. SNR �RSN� as a function of noise intensity T for system
with �solid curve� and without �dashed curve� ST. For ST we use
�=0.03 and �=0.1 in Eq. �6�. The barrier height is set a=0.5 for
the system without ST. Here and hereafter �0 and A0 are always set
to be �0=0.5 and A0=0.3.
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FIG. 2. First-passage time distribution functions for the system
marked by a black circle �a� and by a white circle �b� in Fig. 1.
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the input signal A0 cos��0t� in Fig. 4�a� for the system
marked by solid squares �a� and open squares �b�, belonging
to the high-T region �T=0.4�. When T and consequently

noise are large, we have some chances of successive hopping
events as shown in Fig. 4. In this case the activation energy
a�t� increases rapidly as shown in Fig. 4�a� �typically around
t	80� due to ST, which inhibits a firing event on average for
some time. That is, in our Monte Carlo simulations we in-
crease a�t� by � whenever there occurs a hopping event �see
Eq. �6��. From this we intuitively see that large � values
make a�t� large, resulting in small fr�t�. With these prepara-
tions we now consider the � and � dependence of SNR.

IV. THRESHOLD DYNAMICS AND SNR

Now let us consider Eq. �6�, which describes the time
evolution of the barrier height a�t�, and express it as

da/dt = − �a�t� + � fr�t� , �18�

where fr�t� denotes the firing rate at time t. Since we are
mainly interested in a subthreshold situation �i.e., a�t��A0�
and the large-T region where ST did not work well compared
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FIG. 3. Time-averaged activation energy ā �a� and time-
averaged firing rate fr as functions of T �b�. Parameter values used
for the solid and dashed curves correspond to the ones in Fig. 1.
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FIG. 4. Dynamical behavior x�t�= ±1 �solid curves� and a�t�
�dotted curves� from Monte Carlo simulations together with the
sinusoidal signals A0 cos��0t� �dashed curves� for the system
marked by the solid squares �a� and the open squares �b� in Fig. 1
with �=0.03 and �=0.1.
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FIG. 5. Time-averaged activation energy ā �a� and time-
averaged firing rate fr �b� as functions of T from Eq. �19�
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FIG. 6. SNR �RSN� with ST ��=0.03, �=0.04, C=0.75� �solid
curve� and without ST �dashed curve�.
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with the weak-noise region �see Fig. 1�, we neglect for quali-
tative discussion A0 /T in Eq. �2� and obtain, with the use of
a simple form for the Kramers rate �4�,

��/��ā 
 Cā = exp�− ā/T� , �19�

after time averaging both sides of Eq. �18� for one period
	p=2� /�0 of the external field. From this we see that at
large T, ā→1/C and fr→ �1−1/ �TC��. In Fig. 5�a� we show
ā as a function of T, which is obtained by solving Eq. �19�
for three values of C
� /� �C=0.3,0.75,1.0 from above�.
We notice that the barrier height ā remains small even for
large T when C
� /� becomes large. The firing rate fr, cal-
culated from Eqs. �2�, �6�, and �19�, is shown in Fig. 5�b�
�C=0.3,0.75,1.0 from below�. Reflecting the fact that ā does
not increase rapidly with T when C is large, the firing rate
seems to remain large in the large-T region when C becomes
slightly larger than 0.3.

Guided by this observation we choose C=0.75 ��=0.03
and �=0.04� and plot the SNR in Fig. 6 as a function of T.
Compared with the solid curve in Fig. 1 we notice that the
SNR is improved considerably and our ST seems to work
well even in the high-T region by choosing proper values for
C=� /�.

Details of dynamics (x�t� ,a�t�) are shown in Fig. 7 for the
system marked with an open circle in Fig. 6. This should be
compared with the dynamics in Fig. 4�a� which is character-
ized by different parameter values ��=0.03, �=0.1, C=0.3�.

By choosing a smaller value for � �=0.04� �keeping � fixed
to 0.03� we could prevent the activation energy from becom-
ing too large and this contributes to making the SNR large.

V. ENERGY TRANSFER, DWPS, AND CONCLUSION

In this section we consider briefly energy transfer from
input signals to the reservoir �i.e., dissipation� and the
DWPS, Eqs. �3�–�5�, before concluding this paper.

The hopping rate, Eq. �6�, can be rewritten as

w+�t� = exp�− �Vs − V1�t��/T� ,

w−�t� = exp�− �Vs − V−1�t��/T� , �20�

with Vs�=a� and V±1�t� the energy at the saddle point �x
=0� and at the position x= ±1, respectively. If x�t� changes at
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FIG. 7. Dynamical behavior x�t�= ±1 �solid curves� and a�t�
�dotted curves� from Monte Carlo simulations together with the
sinusoidal signals A0 cos��0t� �dashed curves� for the system
marked by the open circle in Fig. 6.
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without ST �dashed curve�. For ST we use �=0.05, �=0.05 in Eq.
�7� and the barrier height is set a=1 for the system without ST
where A0=0.8 and �0=0.5.
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the DWPS with ST �a� and without ST �b� at T=0.15. Parameter
values characterizing the system are the same with those for Fig. 9.
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t= t1 from −1 to 1, the energy �E�t1� transferred from the
signal to the reservoir is given by �E=−�V1�t1�−V−1�t1��
=2V−1�t1�. Dividing all the energy �i�E�ti� by the experi-
mental duration 	expt and ā, we have

Es→r = �
i

�E�ti�/�	exptā� , �21�

which was obtained by Monte Carlo experiments.
In Fig. 8 is plotted Es→r as a function of T. The dotted

curve ��=0.03, �=0.04�, the dashed curve ��=0.03, �=0.1�,
and the solid curve correspond to the systems represented by
the solid curve in Fig. 6, the solid curve in Fig. 1, and the
dashed curve in Fig. 1, respectively. We see that the SNR and
Es→r show surprisingly similar behaviors. This is rather natu-
ral since both quantities depend on the firing rate and the
firing timing in similar ways. Especially the firing timing is
important for both the SNR and Es→r. When a hopping event
from x=−1 to x=1 occurs at time t1, maximum energy trans-
fer is achieved when V−1 becomes maximum at time t1. This
synchrony is evidently reflected to the SNR. As noted in Sec.
I the synchrony is also important for SNR.

A final comment is on the double-well potential system,
Eqs. �3�–�5�. Since the TSS and DWPS describe similar hop-

ping events under time periodic signals, we expect that both
systems share common properties, especially in relation to
ST and SR. Figure 9 shows the SNR of the DWPS with
�solid curve� and without �dashed curve� ST, where the SNR
is defined as the ratio P��0� / �P��0−d�� /2+ P��+d�� /2�
with P��� denoting the power spectral density at frequency
� and d� is the frequency mesh size in numerical calcula-
tions of P���. This should be compared with Fig. 1 for the
TSS. Corresponding to Fig. 2, we compare pfp�	� for the two
systems marked by an open and solid circle in Fig. 9 in Fig.
10. From these results it is seen that the TSS and DWPS
behave similarly with respect to response to and information
transfer of the periodic signals.

In this paper we applied a ST mechanism, Eq. �6�, to the
TSS, Eq. �1�, and confirmed that a better SNR is simply
obtained by the ST mechanism for the small-fluctuation �i.e.,
low-T� region. Tuning of the parameters � and � was guided
by a simple equation �19�, leading to a better SNR even for
the high-T region. The energy transfer or dissipation rate was
also studied, and this quantity �21� turned out to be able to
play a similar role as a measure of the information process-
ing ability of a threshold device.
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